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ABSTRACT 
 
A spacecraft in a high-density equatorial LEO 
plasma will float negative relative to the 
ambient plasma.  Because of the electron 
collection of exposed conductors on its solar 
arrays, it may float negative by up to its array 
voltage.  The floating potential depends on the 
relative areas of electron and ion collection of 
the spacecraft.  Early estimates of the 
International Space Station (ISS) potential 
were about –140 V relative to the surrounding 
plasma, because of its 160 V solar array string 
voltage.  Because of the possibility of arcing 
of ISS structures and astronaut EMUs 
(spacesuits) into the space plasma, Plasma 
Contacting Units (PCUs) were added to the 
ISS design, to reduce the highly negative 
floating potentials by emitting electrons 
(effectively increasing the ion collecting area).  
In addition to the now-operating ISS PCUs, 
safety rules require another independent arc-
hazard control method.  In this paper, I discuss 
alternatives to the ISS PCUs for keeping the 
ISS floating potential at values below the arc-
thresholds of ISS and EMU surface materials.  
Advantages and disadvantages of all of the 
techniques will be presented. 
 

INTRODUCTION 
 
Laboratory measurements have established 
that EMU suit materials may arc at potentials 
of –60 V1,2.  Floating Potential Probe (FPP) 
measurements on ISS have shown that it is 
possible under certain plasma conditions for 
parts of ISS to float at voltages this low3,4.  
Because of the potentially catastrophic 

astronaut suit arc-hazard, three independent 
controls must be in place.  For early ISS 
missions, in addition to two operating PCUs, 
three passive potential control techniques were 
also used.  Two of them acted to decrease 
solar array electron collection.  The other was 
intended to increase the ion collection to the 
docked STS/ISS combination.  The two array 
electron-collection modifying techniques were 
to turn the solar array conductors (on the array 
front sides) into the array wake and to shunt 
the number of active array strings.  Both 
negatively affect the amount of power the 
arrays produce.  The modification of ion-
collection was in turning the STS/ISS 
combination such that the Shuttle bell nozzles 
are pointed into the ram.  It has been estimated 
that the effective ram ion-collection area of 
the Shuttle bell nozzles is about 10 square 
meters. 
 
Models of ISS floating potentials, combined 
with FPP measurements on orbit, have shown 
that ISS naturally has about 10 square meters 
of ion-collecting area5.  Because of the 
surprisingly small ISS solar array electron 
collection, this ion-collecting area keeps the 
present-day ISS structure to within about 40 V 
of the plasma even in the absence of operating 
PCUs under most plasma conditions.  FPP 
measurements also show that when the Space 
Shuttle is docked to ISS, it does not increase 
the effective ion-collecting area of ISS9.  This 
must mean that the docked Shuttle places 
much of the ISS ion-collecting area in its 
wake.  Moreover, because of the new 
horizontal S0 truss on later mission builds, the 
so-called vxB charging will be increased, and 
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normal plasma conditions may lead to 
potentials close to or equal to the present  
–40 V safety limit.  In addition, in November 
2002, on mission build 12A, another solar 
array is scheduled to be deployed, doubling 
the array electron collection.  Estimates of ISS 
charging then routinely exceed the safety 
limits5.  Finally, during array changeouts, one 
of the two present PCUs will be turned off 
during at least one astronaut EVA, negating 
one of the hazard controls at a time when the 
amount of power available is critical.  To 
make matters worse, FPP is no longer 
working, and safe ISS potentials cannot be 
ascertained prior to EVAs. 
 
For all of these reasons, alternatives to PCUs 
for ISS potential control must be investigated, 
and one or more of the alternatives chosen to 
provide adequate astronaut EVA safety. 
 

PASSIVE TECHNIQUES 
 
1. The first passive technique, verified by FPP 
measurements, is SHUNTING all but one 
solar array string per panel.  Because of a 
peculiarity of the shunting circuit, one string 
per panel must remain unshunted.  It is the 
high positive voltage of one end of a solar 
array string relative to the other grounded end 
that contributes most to electron collection.  
Panels can be shunted independently of one 
another, so it is possible to shunt only one of a 
panel pair.  However, it is either all strings 
(but-one) of each panel shunted or none at all. 
 
Advantages – very effective, can be done 
within minutes, no cost. 
Disadvantages – costs all array power, not 
feasible when power demands are great, 
unshunting leads to a minute or so of 
increased charging. 
 
2. The second passive technique is TURNING 
THE ARRAYS INTO THEIR OWN 
WAKES.  FPP measurements show that even 

if out of the ram flow by only a few degrees, 
array electron collection is decreased to near 
zero.  This can also be done independently for 
each panel.  It can be used along with or in 
addition to the array shunting. 
 
Advantages – very effective, can be done 
within one orbit, no cost. 
Disadvantages – costs about 70% of array 
power on the morning side of each orbit, may 
not be feasible when power demands are 
great. 
 
3. The third passive technique is ADDING 
GROUNDED ION-COLLECTING AREA.  If 
essentially bare-metal grounded conductors 
can be added in sufficient amount in the ram 
direction, solar array electron collection may 
be overcome, and no charging will occur 
(outside of vxB charging, which is always less 
than 40 V on ISS).  The amount needed is at 
least 10 square meters with the present ISS 
configuration, and will increase proportionally 
with added solar array area.  For instance, for 
mission build 12A and until three arrays are 
operational, we would need about 30 square 
meters in the ram direction in addition to what 
exists now.  For instance, much of the ram 
side of the S0 truss could be covered with 
grounded conductor. 
 
Advantages – very effective, works at all 
times unless ISS attitude is changed (no ops 
control necessary), can be used to save PCU 
gas for EVAs. 
Disadvantages – costly, demands non-
corrosive conductors, integration issues, must 
be increased with added arrays, may affect 
temperature balance. 
 
4. The fourth passive technique is 
PREVENTING ARCS by ameliorating the 
hazardous conditions. For instance, insulating 
the metal parts of the EMUs can prevent 
arcing from astronaut EMUs.  An astronaut 
who is not grounded to ISS structure will 
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never arc.  This means using insulating tethers 
and tools, and covering with insulating 
material conductors on the EMU suits where 
the existing insulation might be breached 
(neck rings and anodized aluminum parts, 
etc.).  Arcing from ISS surfaces can be 
prevented by specifying thick, sealed sulfuric 
acid anodization on all exterior surfaces or 
covering them all with beta cloth, for instance. 
 
Advantages – very effective, permanent, no 
ops control necessary, obviates need for 
PCUs. 
Disadvantages – costly, requires materials and 
components development program, doesn’t 
control ISS potential for science experiments. 
 
5. The fifth passive technique is to GROUND 
THE POSITIVE END OF THE SOLAR 
ARRAYS.  Considered by the first SSF 
Electrical Grounding Tiger Team and rejected 
as too costly, this option does prevent ISS 
structure charging6.  With modern PMAD 
techniques, such as the use of buck-boost 
converters, it is possible to ground the ISS 
solar arrays positively and use a negative-
ground power system without a great loss of 
efficiency.  This system was considered for 
use on the now-defunct TROPIX (TRansfer 
Orbit Plasma Interactions eXperiment)7. 
 
Advantages – completely effective, 
permanent, no ops control necessary, obviates 
need for PCUs. 
Disadvantages – costly, some loss of 
efficiency, major change to working system, 
severe integration issues. 
 

ACTIVE TECHNIQUES 
 
6.  The first active technique is OTHER 
HOLLOW-CATHODE ELECTRON 
EMITTERS.  The PCUs on ISS were sized to 
emit 10 amps of electrons.  FPP and PCU 
measurements on ISS have shown that this 
could be reduced to 2 amps with no worries 

about over-current conditions10.  The expelled 
xenon needed would be proportionally 
reduced.  Retrofitting existing PCUs could 
extend their lifetime by at least a factor of 
five, and adding extra hollow-cathodes would 
provide the extra hazard controls for EVA.  
Other hollow-cathodes are commercially 
available, and are being used in other space 
applications, the PROSEDS electrodynamic 
tether experiment8, for example. 
 
Advantages – very effective, proven by PCUs 
and FPP, ops already experienced in use. 
Disadvantages – costly, requires periodic 
refueling, life issues for new designs, 
integration issues. 
 
7. The second active technique is OTHER 
ELECTRON EMITTING DEVICES.  Many 
such devices have been proposed.  All must 
overcome the space charge current limitations 
and must prevent electron-beam instabilities, 
while emitting electrons beyond the ISS 
plasma sheath.  Devices proposed for 
preventing charging in geosynchronous earth 
orbit (GEO) will not in general work for LEO 
because of the high current requirements 
(amps) and the short LEO Debye length.  
However, if they can be made to work, such 
devices typically use no working fluid except 
electrons. 
 
Advantages – effective, require no refueling, 
relatively passive, semi-permanent. 
Disadvantages – unproven in LEO, lifetime 
issues, integration issues, requires device 
development and testing program. 
 
8.  The third active technique is CHARGING-
MONITORED ARRAY SHUNTING.  This 
requires an operating monitor, such as FPP, 
and array shunting on demand.  Software 
would automatically shunt one or more of the 
array panels when ISS charging exceeded a 
certain value, or when plasma conditions exist 
which it is predicted will lead to charging 
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beyond safe values3,4. If the charging monitor 
operated in real-time, it could even determine 
through analysis of transients when arcing had 
occurred, and would shunt one or more arrays 
if it did. 
 
Advantages – as effective as array shunting, 
can operate within seconds, proven by FPP. 
Disadvantages – requires new or repaired 
FPP, requires software development, can lead 
to loss of power at inappropriate moments.  
 

CONCLUSION 
 

In order to maintain two-fault tolerance to the 
still real astronaut EVA shock hazard, 
techniques in addition to the existing ISS 
PCUs must be implemented.  I have discussed 
several more-or-less viable alternatives to the 
existing ISS PCUs.  Development and 
implementation of one or more alternatives is 
imperative for future ISS mission builds, 
unless the program chooses to waive its EVA 
safety rules. 
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